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The present authors carried out a detailed study of the linear stage of convective 
instability of coarse scale perturbations in the presence of gyrotropic or spiral turbulence 
in [i] using the equations of [2]. It was shown that with increase in spirality the hori- 
zontal dimension of convective cells increases and when a critical spirality is reached 
complete readjustment of the flow occurs, with formation of a vortex, the size of which 
is determined by the horizontal inhomogeneity of the problem. 

Now, within the framework of the equations of [i, 2] we will study the nonlinear stage 
of convective instability. The basic equations have the form 

Ou/Ot + (uv)u = ( ' i / P o ) V P  + vAu + ~gOe -+- ~gAf .  

00/8t  + (uv)O : A(eu) + %AO, div u = O, 

f : e ( e r o t ~ u ) - -  (e V ) [ e . ~ u ] , e  = (O,O, i ) ,  

where ~ = ~0~(r, z) is the spirality coefficient, ~0 = const; the remaining notation coin- 
cides with that of [i]. In dimensionless variables we have 

au/Ot + (uv)u = --VP + hu "4- Ha0e A- sf, 
O0/Ot -4- (uv)0 = (eu) A-- hO, div u = O, 

f ---- e(e rot o~u)-- (ev)[e-~zu]. 

(i) 

Here Ra = 8gAH4/v2; s = Ra~0v/H3; H is the height of the liquid layer; H, t o = H2/v, u 0 = 

v/H, P0 = P0 v2/H2, To = AH are length, time, velocity, pressure, and temperature scales. 

We will consider the two-dimensional problem for a planar layer in the variables flow 
function-vorticity 

(o = &dOz  - -  &v/Ox,  u = 8 5 / & ,  w = - -aq ; /ax ,  

having written Eq. (i) in the form 

at 4 O (z, x) a o  - -  na  -77- + s ( ~ - -  az 2 j ,  ( 2 )  

Ov o ($, v) a~v 80 O (~, 0) AO § w, 
o-'F + O(z,x) - A v - - s 7 7 '  a-F + o(z , x )  - 

a(~, 1) a~ af a~ a/ 
A ~ = ~ ,  a (~ ,x )  a= a~ a~ a~' u = ( u , v , w ) .  

The z axis is directed across the layer and the x axis along it. 

We will find the steady state (8/8t = 0) nonlinear solution of system (2) in the limit- 
ed region 0 ~ z ~ i, 0 ~ x ~ x 0 with periodic boundary conditions for both coordinates in 
the case of slight supercriticality, where the Rayleigh number Ra slightly exceeds the crit- 
ical number Re,. The spirality is considered homogeneous (~ = I). The increment of the 
most rapidly increasing harmonic is small, so it can be expected that the weak nonlinearity 
stabilizes the growth of the perturbation even at a small amplitude of the latter. 

We rewrite the steady state analog of system (2) in the form 

Lof = 0 ~ ,  i)la (z, x), (3) 
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where 

Re aO/ax - -  s (a"-vlOz "2 - a"-vlaxD ) 
sa2~laz - 

f = @, v, 0, ~), L0f - - -=-  a~lOx + hf, 

and f o l l o w i n g  t h e  u s u a l  p r o c e d u r e  ( s e e ,  f o r  e x a m p l e ,  [ 3 ] ) ,  w r i t e  i t s  s o l u t i o n  i n  t h e  f o r m  
of a series in the small parameter g, characterizing the degree of liquid supercriticality: 

[ = e[  (1) --}- e2f (2) + . . . .  8 2 = lqa - -  R a , .  

Then Eq. (3) may be written as 

where 

Lf = 0(% f)/O(z, x) + (eic)O/ax)q, 

n = 0, o, o, o), 

(4) 

Ll ------ hi -- 

Equating terms with equal powers of E in Eq. 
imations 

Re,  ao/ax - s (a:v/az "- - a~v/ax~-)) 
sO ~ t~/Oz 2 

otp/ox 
o) 

( 4 ) ,  we o b t a i n  e q u a t i o n s  o f  s u c c e s s i v e  a p p r o x -  

L [ ( l )  = 0 ,  L [  ('-D = a ( ~  (1), f(~))/a(z, x); ( 5 )  

L ( a )  O (r [(2)) a ($(2) ,  [(1)) 00(1) 
e(~,~) + o(~,x) +--aT-x~" (6) 

Using the periodic boundary conditions we obtain from these equations 

/ - -  K 2 sin kx sin :~z '~ ( 7 ) 
[ ( s n i / K  ~) sin kx sin a z |  K2 zt a 

i(n = ~1 ~ (k/K) cos kx sin az  ] = ~31~, = .iy k2; 

\ " sin'kx'sin.~z " 7  

0 ) (s) 
0 

f(2) = ~2~ + __ ~2 (ki/8~K 2) sin 2az 

0 

[k : ~n/x0, n is an integer which is chosen such that Ra, = (K s - s2~2(~ 2 - k2))/k 2, cal- 
culated for a given n value is at a minimum; the coefficients $i and $2 are defined by the 
condition of solubility of the third and fourth approximation equations, respectively]. 

We now substitute Eqs. (7), (8) in Eq. (6). Then 

o (9) 
L f ( a ) =  ~l~2(k2 /K~)s in2~z - -~ (ka /8K2)coskx ( s in  g z - - s i n  3~z) " 

0 

We seek the solution of Eq. (9) in the form 

w(a) = ( A l s i n  ~ z - ~ - A i s i n  3az) sin kx, 
0 (3) = ( B l s i n  az + B i s i n  3nz) cos kx + B a s i n  2az .... ( 1 0 )  

The condition of solubility of the system of linear algebraic equations for the ampli- 
tudes Az, A 2 .... , obtained after substitution of Eq. (i0) in Eq. (9), allows us to find 
the coefficient Sz = • I/2 

Thus, the amplitude of the steady state nonlinear regime is proportional to the quant- 
ity 

e~1 ---- (K/k) [8 (Ra - -  Ra, ) /Ra, ]  ~/~. 

817 



We will consider steady state nonlinear solutions for slight supercriticality for the 
case of an infinite horizontal layer (0 ~ z ~ I, -~ ~ x % ~): 

] = e l  (I) q- e2l (~) q- .... Ra = Ra (~ q- e2Ra (2) + ... 

It is well known that we may use as a measure of the intensity of convective motion 

the thermal flux <w0> = [w0dV/[dV, which is proportional to the difference between all the 

heat transported through the layer and the heat which is transported solely due to thermal 
conductivity for a given equilibrium temperature gradient. We therefore normalize the 
steady state solution for the case considered to this thermal flux: <wS> = ~2, or 

<w(i)00)) = I, (wO)0 C2) + w(2)0 (I)) = 0,... (ii) 

The first approximation solution has the form of Eq. (7) with coefficient $I = 2K/k, 
obtained by normalization of Eq. (Ii). The wave number k in the horizontal direction is 
defined as the value at which the neutral curve reaches a minimum, i.e., Ra (~ = min [(K s - 

S2~2(~2 -- k2))/k2]. 

To solve the second approximation equations described by Eq. (8), normalization of 
Eq. (Ii) yields $2 = 0, so that in the second approximation the correction to the turbulence 
and flow function (and correspondingly, the velocity) is absent, and in the expressions for 
temperature we have the second harmonic of the coordinate z, independent of x. In the case 
under consideration the equations of the third approximation, Eq. (6) has the form 

L[(3) 0(~(1), f (2)) 0(r f(1)) ~0 (') 
a(z,x) + ~ ( z , x )  + Ra(Z)-#7-zq" 

Substituting on the right side of the solution of the first and second approximations (7), 
(8), with coefficients ~z = 2K/k, $2 = 0 and using the condition of solubility of the inhomo- 
geneous equation thus obtained, which consists of orthogonality of the right side to the 
eigenfunctions of the operator L, we find Ra (2) = (i/2)Ra (~ or E 2 = 2(Ra - Ra(~ (~ 

In the third approximation the expressions for velocities and temperature contain the 
third harmonic of the coordinate z. 

Increase in spirality above some limit leads to convective instability, for which in- 
stead of a set of cells with approximately equal vertical and horizontal dimensions, form- 
ation of a structure with horizontal dimensions significantly greater than the vertical 
becomes energetically more favorable. When the spirality s § s, this dimension formally 
tends to infinity, and a limited horizontal structure scale can be obtained by introducing 
horizontal inhomogeneity into the problem, for example, a dependence of spirality on the 
coordinate x. 

We will now consider the results of numerical solution of the general nonlinear pro- 
blem of convection under conditions of developed spiral turbulence for the axisymmetric 
case in the region 0 ~ z ~ i, 0 ~ r ~ r 0 ("disk"), when the spirality is a function of the 
radial coordinate: ~(r) = i - (6r) 2 System (i) takes on the form 

a'---{'3u u-OTr -lU W-O-z'z r r Oz = 0--7 Or / + - - - -  R a  + s a . az~ -~r a~2 ar O~ ] 2' ( 1 2 )  

O~ Ov Ov uv 0 t avr I 02v s ~  
a--/-+u'o-7 + w - T f + - 7 - = ~ -  r - ~ / ]  + az -z- 7 F '  

ao ao aO t o / o0~ 020 
a--i + u -~- + w T- [ = w + 7---~T kr-~-r ) + --az ~ , 

a [ ,  a,~ i 0% , a,  , a ,  
) "~r "T-  -~r + "-#- az 2 r az " w :  r Or 

The following boundary conditions were chosen: 

u = v = w = 0 (or ~ = 8~/~n = v = 0, where n is the normal to the correspond- 
ing boundary) at the boundaries z = 0, z = i, r = r0; 0 = 0 on the boundaries (13) 
z = 0 and z = I; 80/~r = 0 on the boundary r = r0; ~ = v = ~ = 80/8r = 0 on 
the axis r = 0. 
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At time t = 0 initial conditions 

{ (r--a*Is I'z-- a~l~l (14) 

v(r ,  z) = O(r, z)  = O. 

were specified. 

For the numerical solution of Eqs. (12)-(14) an explicit difference scheme with order 
of approximation 0(~, hl 2, h22) was used, where ~, hl, h 2 are the steps in t, r, z, respect- 
ively. The values of the flow function ~, turbulence m, and azimuthal velocity v were cal- 
culated at the points r i = ihl, zj = jh2, and temperatures at the points ri+I/2 = (i + 1/2)• 

h I, zj = jh 2. The Poisson equation for the flow function ~ was solved by a single-time 

rapid Fourier transform with respect to the index j with subsequent drive along the index i. 

We will now present the results of numerical solution of Eqs. (12)-(14) for a "disk" 
with parameters r 0 = 20, Ra = 800, s = 8, a1=3, a2----0,5, T = 10 -3 , h I =1/3, h 2 = 1/8. 
Figure 1 shows flow function isolines for 5 = 0; 0.023; 0.046 (a-c), characterizing the 
degree of horizontal inhomogeneity of the spirality. We use the symbol r, to denote the 
radius at which the perturbation increment calculated from the local spirality value ss 

s~(r) vanishes, i.e., max ~iRa, ss k 2) = 0, u > 0, ~;r>r, < 0 (a-c: r, = ~; r0; 
fl 

r0/2). Figure 2 shows the quantity ~m = max ~i,j as a function of time for 6 = 0; 0.023; 
i.j 

0.046 (1-3). Figure 3 gives the radial distribution of azimuthal velocity v(r, z) for z = 
0.5 and 6 = 0.046 (r,/r 0 = 0.5) at various times (a-d: t = 3.5, 4.0, 4.5, 5.0), normalized 
to the maximum azimuthal velocity in the calculation region v m = max vi, j (a-d, v m = 80, 

i.j 
114, 92, 113). 

Analysis of the calculation results permits the following conclusions: i) in the lin- 
ear stage (t < 0.5) the unknown functions increase exponentially. Then in the time interval 
1.5 < t < 3 the nonlinear terms become significant, and the maximum values of the flow func- 
tion ~m and azimuthal velocity v m increase linearly: ~m, Vm ~ (t - to). At t > 3 the quant- 
ities ~m and v m undergo oscillations with period T : 1 about some constant values. These 

oscillations correlate with the number of extrema in the azimuthal velocity v(r, z := 0.5). 
The presence of these oscillations does not contradict the first part of this study, which 
constructed a steady state solution for the case of slight supercriticality, since the 
values of s and Ra in the given calculation are far from critical; 2) with increase in the 
spatial inhomogeneity parameter 6 the flow localization region becomes smaller, coinciding 
with the zone in which the linear increment ~, calculated from the local spirality value 
ss = sa(r), is positive. 

i. 

2. 
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INFLUENCE OF PHASE TRANSITIONS ON SOUND PROPAGATION IN FOGS: 

COMPARISON OF THEORY WITH EXPERIMENT 

D. A. Gubaidullin and A. I. Ivandaev UDC 532.529:534.2 

Several theoretical and experimental papers [i-i0] have been devoted to the propagation 
of acoustic disturbances in two-component mixtures of a gas with vapor and liquid droplets. 
Here we give a brief survey of the latest theoretical publications. We discuss the exist- 
ing experimental data. We also compare the theory developed in [g] with the experimental 
data of other authors. 

i. The work of Cole and others [2, 4, 5] can evidently be cited among the earliest 
theoretical studies of the propagation of low-intensity waves in two-component two-phase 
mixtures of an inert gas with a vapor and liquid droplets in the presence of mass transfer 
by diffusion. These authors investigated the case of small mass contents of the condensed 
phase, m r i. It was established [2, 5] that the first maximum of the attenuation per 
wavelength o in aerosols with phase transitions occurs at m~v ~ m (m is the angluar frequen- 
cy, and ~v is the Stokes relaxation time of the phase velocities; see Sec. 3 below), i.e., 
at m~v ~ i. The attenuation coefficient in the vicinity of frequencies m~v ~ m is much 
greater than the corresponding values of o for aerosols without phase transitions. A pre- 
vious comparison [3] of theory with experiment indicated only qualitative agreement between 
them. 

Marble and Candel [6] investigated the feasibility of using a cloud of fine droplets 
to attenuate noise with the injection of liquid into the air intake of a turbojet engine. 
The magnitude of such attenuation is proportional to the vapor concentration k V in the gas- 

eous phase, but this rule does not hold for large values of k V. The shortcoming of [2, 4- 
6] lies in the failure to take into account the difference between the gas constants of 
the vapor and gas components in the equation of state for the host phase. It was actually 
assumed, therefore, that the gaseous phase is a calorically ideal gas when mass transfer 
is present in the disperse system. Allowance for the indicated difference in [7] improved 
the agreement between theory and the experimental data. However, this agreement still fell 
short. 

All of the cited investigations of sound propagation in vapor-gas-droplet systems were 
carried out within the framework of a quasiequilibrium phase transition scheme, where it is 
assumed that the temperature of the droplet surface during mass transfer is equal to the 
saturation temperature at the given partial pressure of the vapor. The transient effects 
of phase interaction are significant for high-frequency disturbances in the suspension; 
when they are taken into account, in general, the effects of nonequilibrium of the phase 
interface in phase transition are also taken into account. The influence of the sum total 
of transient and nonequilibrium effects of interphase mass, momentum, and energy transfer 
on the propagation of acoustic disturbances in mixtures of a gas with vapor and liquid drop- 
lets was first investigated by Gubaidullin and Ivandaev [g, i0]. They analyzed the individ- 
ual contributions of nonequilibrium interphase heat and mass transfer and friction of the 
phases to wave dispersion and dissipation. 

From the experimental point of view, the propagation of weak disturbances in gas sus- 
pensions has not been adequately studied to date. The majority of experimental studies 
have been concerned with sound propagation in suspensions without phase transitions. Accord- 
ingly, although the most important data are those pertaining to the influence of phase tran- 
sition on the dispersion relations, such data are very limited. 
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